Week 14: Convolution and Filters

1 Computing Infinite and Cyclic Convolution

For the following pairs of vectors \mathbf{f} and \mathbf{g}, compute
(1) the product $(\mathbf{f} \cdot \mathbf{g})$
(2) the (infinite) convolution $(\mathbf{f} * \mathbf{g})$
(A) $\mathbf{f}=[1,2,3,4] \quad$ and $\mathbf{g}=[1,-1,1,-1]$
(B) $\mathbf{f}=[1,2,3,4] \quad$ and $\mathbf{g}=[1,0,-1,0]$
(C) $\mathbf{f}=[1,2,3,4] \quad$ and $\mathbf{g}=[3,1,-1,1]$
(D) $\mathbf{f}=[1,2,3,4] \quad$ and $\quad \mathbf{g}=[1,2,3,4]$
(3) the cyclic convolution $(\mathbf{f} \circledast \mathbf{g})$
(4) the Fourier transforms of \mathbf{f}, \mathbf{g}, and $(\mathbf{f} \circledast \mathbf{g})$

2 Filters

Find the vector \mathbf{g} so that $\mathscr{F}\{\mathbf{f} \circledast \mathbf{g}\}$ results in the following (assume $\mathscr{F}\{\mathbf{f}\}=\left[c_{0}, c_{1}, c_{2}, c_{3}\right]$).
(A) $\mathscr{F}\{\mathbf{f} \circledast \mathbf{g}\}=\left[c_{0}, c_{1}, 0, c_{3}\right]$
(C) $\mathscr{F}\{\mathbf{f} \circledast \mathbf{g}\}=\left[c_{0}, 0, c_{2}, 0\right]$
(B) $\mathscr{F}\{\mathbf{f} \circledast \mathbf{g}\}=\left[0,0, c_{2}, 0\right]$
(D) $\mathscr{F}\{\mathbf{f} \circledast \mathbf{g}\}=\left[-c_{0}, c_{1},-c_{2}, c_{3}\right]$

3 Inverse Filters

Find the complex vector \mathbf{d} so that the following hold (assume $\mathscr{F}\left\{\left[f_{0}, f_{1}, f_{2}, f_{3}\right]\right\}=\mathbf{c}$).
(A) $\mathscr{F}\left\{\left[f_{0}, f_{1}, 0,0\right]\right\}=(\mathbf{c} \circledast \mathbf{d})$
(C) $\mathscr{F}\left\{\left[f_{0}, 0, f_{2}, 0\right]\right\}=(\mathbf{c} \circledast \mathbf{d})$
(B) $\mathscr{F}\left\{\left[0,0, f_{3}, f_{4}\right]\right\}=(\mathbf{c} \circledast \mathbf{d})$
(D) $\mathscr{F}\left\{\left[f_{0}, f_{1},-f_{2},-f_{3}\right]\right\}=(\mathbf{c} \circledast \mathbf{d})$

4 Theory and Advanced Problems

A) Read about Schönhage-Strassen multiplication in
http://www.ams.org/samplings/feature-column/fcarc-multiplication
Use this by hand to compute 2458×7421.

