Week 14: Convolution and Filters

1 COMPUTING INFINITE AND CYCLIC CONVOLUTION

 For the following pairs of vectors f and g, compute (1) the product (f · g) (2) the (infinite) convolution (f * g) 	 (3) the cyclic convolution (f ⊛ g) (4) the Fourier transforms of f, g, and (f ⊛ g)
(A) $\mathbf{f} = [1, 2, 3, 4]$ and $\mathbf{g} = [1, -1, 1, -1]$	(C) $\mathbf{f} = [1, 2, 3, 4]$ and $\mathbf{g} = [3, 1, -1, 1]$
(B) $\mathbf{f} = [1, 2, 3, 4]$ and $\mathbf{g} = [1, 0, -1, 0]$	(D) $\mathbf{f} = [1, 2, 3, 4]$ and $\mathbf{g} = [1, 2, 3, 4]$

2 FILTERS

Find the vector
$$\mathbf{g}$$
 so that $\mathscr{F} \{ \mathbf{f} \circledast \mathbf{g} \}$ results in the following (assume $\mathscr{F} \{ \mathbf{f} \} = [c_0, c_1, c_2, c_3])$.
(A) $\mathscr{F} \{ \mathbf{f} \circledast \mathbf{g} \} = [c_0, c_1, 0, c_3]$
(C) $\mathscr{F} \{ \mathbf{f} \circledast \mathbf{g} \} = [c_0, 0, c_2, 0]$
(B) $\mathscr{F} \{ \mathbf{f} \circledast \mathbf{g} \} = [0, 0, c_2, 0]$
(D) $\mathscr{F} \{ \mathbf{f} \circledast \mathbf{g} \} = [-c_0, c_1, -c_2, c_3]$

3 INVERSE FILTERS

Find the complex vector **d** so that the following hold (assume $\mathscr{F}\left\{[f_0, f_1, f_2, f_3]\right\} = \mathbf{c}$).

(A) $\mathscr{F}\left\{[f_0, f_1, 0, 0]\right\} = (\mathbf{c} \otimes \mathbf{d})$ (B) $\mathscr{F}\left\{[0, 0, f_3, f_4]\right\} = (\mathbf{c} \otimes \mathbf{d})$ (C) $\mathscr{F}\left\{[f_0, 0, f_2, 0]\right\} = (\mathbf{c} \otimes \mathbf{d})$ (D) $\mathscr{F}\left\{[f_0, f_1, -f_2, -f_3]\right\} = (\mathbf{c} \otimes \mathbf{d})$

4 THEORY AND ADVANCED PROBLEMS

 A) Read about Schönhage-Strassen multiplication in http://www.ams.org/samplings/feature-column/fcarc-multiplication Use this by hand to compute 2458 × 7421.